Calcium Carbonate Budgets - the Basic Framework -*

*title provided by Jim Hendee

Coccolithophores

calcite

Forams calcite

T. Tyrrel

Calcareous algae

High-Mg calcite

Corals aragonite

NOAA

Carbonate Chemistry

 $\Omega = [c_0^{2+}][c_0^{2-}]/Ksp$

Carbonate Chemistry

Proportion of Carbonate Species

Effect of Temperature on $[CO_3^{2-}]$

Records of Past Atmospheric CO₂

Latest lines of evidence suggest that CO_2 levels have been below 500 ppmv since the Miocene (~24 my ago)

Coral/algal reef development over time

$[CO_3^{2-}]$ at 280 ppmv and 560 ppmv

Coral versus Reef Calcification

CORALS

biology/ecology

- Lower calcification means weaker and/or slower growing corals?
- Less competitive for space on reef?
- More susceptible to damage

Other Ecosystems

REEFS

geology

- Lower CaCO₃
 production/cementation
- ⇒ Higher CaCO₃ dissolution
- ➣ Reef CaCO₃ budget reduced
- Loss of reefs, atolls, coral cays

Estimates of present-day carbonate flux, production & accumulation

from Milliman & Droxler 1996

Habitat	Area	CaCO ₃ flux g/m²/y	CaCO ₃ prod. 10 ¹² mol/y	CaCO ₃ accum. 10 ¹² mol/y
	ATO KIII	g/iii /y	10 IIIOI/y	10 IIIOI/y
reefs	0.6	1500	9	7
banks	0.8	500	4	2
carbonate shelves	10.0	20-100	6	3
open ocean	290.0	20	60	11

Processes in Reef CaCO₃ Accumulation

Calcification Measurements

(not always the same thing)

Technique	Measures:	Timescale
Buoyant weight	G _{skel} + D _{skel}	Duration of experiment
? Alk of monoculture	G _{skel} + D _{skel}	Discrete measurements over duration of experiment
Coral band increment	$G_{\text{skel}} + D_{\text{skel}} + G_{\text{inorg}}$	Integrated over time of band formation + post-depositional cementation
? Alk of closed system	G _{sys} + D _{sys}	Discrete measurements over duration of experiment
? Alk in open system	G _{sys} + D _{sys} + mixing	Discrete measurements over duration of experiment – requires knowledge of mixing regime

Biogenic Calcification (individual species)

Species	Extension rate	G*	source
	cm y ⁻¹	g CaCO ₃ cm ⁻² y ⁻¹	
F pallida	0.41-0.71 (0.57)	0.59-1.32 (0.82)	Highsmith 1979
G retiformis	0.49-0.85 (0.68)	0.83-1.45 (1.16)	Highsmith 1979
P lutea	0.35-1.18 (0.76)	0.49-1.66 (1.07)	Highsmith 1979
M annularis	0.61-1.44 (0.98)	0.77-1.55 (1.23)	Dodge & Brass 1984
Porites spp.	0.13-2.21 (1.25)	0.51-2.81 (1.60)	Lough et al. 1999
P lutea	0.61-1.69 (1.09)	0.66-1.96 (1.25)	Bessat & Bigues 2001
Coral species	-	?	?
(alk anomaly)			
Coralline algae	-	?	?
Inorganic cementation	-	?	Enmar et al. 2000
Skeletal dissolution	-	?	?

^{*} G is per surface area of the organism

Coral Community & Reef Calcification

System	G*	Source
	g CaCO ₃ cm ⁻² y ⁻¹	
Mesocosm	0.53	Leclerc et al. 2002
B2 mesocosm	0.27	Langdon et al. 2000
REEFS**		Reviewed by
Reef flats	0.05-1.26	Gattuso et al. 1998
Algal-dominated	-0.004-0.40	
Sediments	-0.01-0.12	
<i>Halimeda</i> meadows	0.01-0.24	Freile & Hillis 1998
Inorganic cementation**	1x10 ⁻⁴ g cm ⁻³ y ⁻¹	Buddemeier & Oberdorfer 1986
Reef accumulation from cores (50% porosity)	0.12-1.80 0.84 (modal value)	Hopley & Davies (submitted)
Dissolution	?	Halley & Yates 2000 Chisholm & Barnes

^{*}G is per surface area of the reef

^{**}Measurements are usually restricted to closed, shallow water systems

Processes in Reef CaCO₃ Accumulation

Bioerosion Rates*

Location & substrate	Bioerosion g CaCO ₃ cm ⁻³ y ⁻¹	Source
Moorea <i>Hydrolithon onkodes</i>	0.12 (live) 0.49 (dead)	
Reunion & Moorea reef flats	0.8 (max)	Peyrot-Clausade et al. 2000
French Polynesia lagoons (Porites lutea blocks)	0.25 (max)	Pari et al. 1998
Kenya reefs (based on echinoid gut contents)	0.120 (unprotected) 0.005 (protected) 0.071 (newly protected)	Carreiro-Silva & McClanahan 2001
Lee Stocking I & One Tree I (microbial bioerosion only)	0.052 (LSI leeward reef) 0.0001 (LSI 275 m) 0.002 (OTI patch reef)	Vogel et al. 2000
Galápagos (blocks of <i>P lobata</i> and cathedral limestone)	2.54 (<i>P lobata</i>) 0.26 int + 2.28 ext 0.41 (cathedral ls) 0.06 int + 0.35 ext	Reaka-Kudla et al. 1996

^{*} Values are difficult to interpret in terms of net calcification (Bioerosion ≠ dissolution)
Important <u>process</u>
Need to differentiate chemical and mechanical components

Closed system processes

Typical aquarium (closed) system

- ☐ coral (calcifying surface)
- sediments (mineral composition, grain size)
- water volume, well mixed, open to air-sea gas exchange
- diurnal light cycle
- calcification f(I, CaCO₃ saturation state)
- sediment dissolution $f(CaCO_3 \text{ saturation state})$
- air-sea gas exchange $f(T, wind speed, air-sea pCO_2 gradient)$
- changes in seawater chemistry are calculated

Aquarium 9.0 INIT CD2=280.00 pH=8.200 SST=25.000 SAL=35.000 wind=5.0000 VDLAQ=1000.00 RADC ORAL=20.000 GRSIZE=0.0100 Z=30.000 K490= 0.050 ID_DROWN=0.010 Ik=400.00 Incon=1200.0 G=3.500 DISS=1.000

Closed system results

Diurnal cycle of calcification progressively alters seawater chemistry

Dissolution kicks in once saturation state drops below that of high magnesium calcite

Net calcification

System approaches steady state after about 10-20 days

[CO₃²⁻] in Biosphere2 Mesocosm

Conclusions

- 1. CaCO₃ budgets are only poorly quantified
- 2. CaCO₃ budgets will almost certainly change
 - CaCO₃ production will go down
 - CaCO₃ dissolution will increase
 - Bioerosion likely to increase
- 3. Need for field-validation of CO₂ effects on reef seawater chemistry and organisms
- 4. Questions: Coral communities are necessary to build reefs are reefs necessary for coral communities?
- 5. Calcareous algae???

Shifts in Coral Reef Publication Topics

